The constructive characterization of (κ, ℓ)-edge-connected digraphs

نویسندگان

  • Erika R. Kovács
  • László A. Végh
چکیده

We give a constructive characterization for (k, `)-edge-connected digraphs, proving a conjecture of Frank and Szegő.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs

Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree  and its in-degree . Now let D be a digraph with minimum degree  and edge-connectivity If  is real number, then the zeroth-order general Randic index is defined by   .  A digraph is maximally edge-connected if . In this paper we present sufficient condi...

متن کامل

Linear Sphericity Testing of 3-Connected Single Source Digraphs

It has been proved that sphericity testing for digraphs is an NP-complete problem. Here, we investigate sphericity of 3-connected single source digraphs. We provide a new combinatorial characterization of sphericity and give a linear time algorithm for sphericity testing. Our algorithm tests whether a 3-connected single source digraph with $n$ vertices is spherical in $O(n)$ time.

متن کامل

Connectivity augmentation algorithms

The main subject of the thesis is connectivity augmentation: we would like to make a given graph k-connected by adding a minimum number of new edges. There are four basic problems in this field, since one might consider both edgeand node-connectivity augmentation in both graphs and digraphs. The thesis wishes to contribute to three out of these four problems: directedand undirected node-connect...

متن کامل

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2011